
Dynamic resource configuration and control for an autonomous
robotic vehicle

Abhishek Kulkarni, Bryce Himebaugh and Steven D Johnson
School of Informatics and Computer Science,
Indiana University, Bloomington, 47401, USA

{adkulkar,bhimebau,sjohnson}@cs.indiana.edu

ABSTRACT

This Work-In-Progress report describes an application of the 9P distributed protocol to
configure and control resources on an autonomous robotic vehicle, ERTS. The vehicle was
designed and developed by the participants of a graduate level course on Embedded and
Real-Time systems at Indiana University, Bloomington. The goal of the ERTS project is
twofold – to teach students about embedded system development through the interaction
with the robotic vehicle and to act as a prototyping platform for researchers seeking to meet
experimental objectives in areas such as computer vision, artificial intelligence, situated
cognition and learning and others.
SyncFS is a synchronous, double-buffered RAM-based virtual file system that defers
writes and stats to a simulated ”clock edge”, thus governing the asynchronous sensor and
actuator components around a central common clock. The SyncFS component model
allows dynamic configuration of sensor and actuator components and remote resource ac-
cess for these components when running in impoverished computing domains. This model
allows rapid prototyping of components on a laptop and ”importing” of the autonomous
cart resources on the laptop during field tests. The file servers are implemented on Linux
using the 9P library implementation, npfs, and use the in-kernel 9P client, v9fs, to mount
them.
We are working on a native Windows userspace file system driver to support platform het-
erogeneity. We plan to build on prior work on organizing sensor networks and abstracting
real-time embedded systems through a file system interface and seek to extend this to inte-
grate with higher-level navigation systems. Some of the points under active consideration
include modifying 9P protocol to support aggregate communication in a sensor network,
using 9P over various embedded-network protocols, and exploring alternative programming
models for synchronous/reactive (SR) systems.

1. Introduction

ERTS (which stands for Embedded and Real-Time Systems) is a computer-controlled golf cart
developed for and by the participants of the introductory course on Embedded and Real-time
Systems. It was developed to demonstrate autonomous real-world navigation and serve as a
research platform to students and experimenters at Indiana University. This mission imposes
a need for a flexible, modular and composable architecture for rapid prototyping and faster
integration of software and hardware components in the embedded system. ERTS is a reactive
distributable embedded system, as the components (sensors, actuators, embedded controllers)
can be placed apart and communicate with each other through a channel interface. These
components maintain a persistent interaction with the environment, reacting to the inputs
from the environment and responding by sending outputs to it. Using a synchronous model
coupled with appropriate file system abstractions, we have developed a distibuted embedded
system runtime framework for ERTS.

At the heart of the ERTS software architecture is a synchronous commit file system, SyncFS,
explained in section 2. Section 3. describes the modular component framework which encap-
sulates SyncFS to support distributed embedded devices in the system. Finally, we discuss
the work in progress pertaining to the runtime framework of the ERTS vehicle.

2. SyncFS

SyncFS is a single-writer, multiple-readers file system with synchronous, system-wide com-
mits. The synchronizing element is a simulated clock edge modeled on the functionality of



syncfs

heading 
controller

compass gps
gps 

device
compass 
device

Figure 1: SyncFS component environment

globally clocked D flip-flop. In synchronous digital hardware, signals change only at clock
edges. The results of these changes, in absence of propogation delay, are conceptually in-
stantaneous. This makes synchronous systems easier to design and reason about. Several
issues related to concurrency, paralellism and fault tolerance are simplified in these models.
Automotive embedded systems, on the other hand, are inherently asynchronous (and so is the
world around us!). SyncFS provides a synchronizing element to the component layer above
it.

SyncFS supports a synchronous design model through a file-system interface. Part of this
support is provided through modification to standard file-I/O (FIO) handlers. Equally im-
portant is a collection of coding conventions, governing use of files acting as communication
channels. We prefer a light-weight imposition of coding conventions, if only because the de-
sign model and methods are still evolving. In other words, SyncFS is more an example of
methdological support, than a end in itself.

SyncFS implements synchronization by:

1. modifying file write calls to defer all actual write commits until a triggering event derived
from the server’s physical clock.

2. modifying file stat calls to block the caller until all write commits are completed.

3. requiring all components to stat a common clock file at the outset of each cycle.

Under the SyncFS regimen, there are no data races, provided that all component-tasks
execute within a clock cycle.A file write may make successive changes to a file without effecting
its visible state to the rest of the system. On the server’s virtual clock tick, the writer’s version
is “latched” and committed so that it becomes visible to the readers. SyncFS update their
state concurrently within a clock edge. Like other reactive systems, this causes reactions
to compete with each other. New inputs arrive before the end of a reaction. For explicit
synchronization and to provide a common global time reference, SyncFS updates a read-only
clock file on each tick.

SyncFS builds on the embedded file system approach of Brown and Pisupati[3], whose work
was based on the original concepts prevalent in the Plan 9 Operating System from Bell Labs.
The file namespace hierarchy provides a shared, language-independent region through which
the ERTS system components interact. Thus, any language with standard I/O—that is, any
language—can interact with system components. In class projects, for example, we use the
Python scripting language for initial prototpying, and can incrementally convert components
to C, Java, or other targets.

3. Component Framework

The component framework is a implementation-independent, conceptual model describing
the components and interaction between them. Components can either be real components
accesing the device through a driver, or virtual components which interface with other real
components in the component ecosystem.



Figure 1 shows real sensor components like compass, GPS and virtual components like the
heading controller that control the dynamics of the cart. A physical resource (sensor or
actuator) in the system is represented by a textual data file that shadows the data image of
the device. The interaction with these components is translated into physical transactions with
the sensors or actuators if it is a real component or inter-component transactions in case of
a virtual component. Components internally consist of a reactive kernel and a data handling
layer coupled with the data-in and data-out interfaces.

Output
interfaces

Input
interfaces

Control Unit Data Unit

Reactive

Kernel

Data 

Handling

Layer

Component Functionality

Figure 2: Component architecture

Each component waits for a simulated
clock edge, reads from its input channels,
executes a function f and writes to its
output channels. A component exposes
a file system hierarchy consisting of the
command file, through which the compo-
nent is controlled, a status file, through
which the state of the component can
be captured. Some complex components
have other auxiliary files for specialized
control. Since the components model a
design function behavior of a state ma-
chine, they appear as cyclic reactive processes that read/write files at the beginning/end of
every cycle, performing a certain function, f . Components have input and output ports con-
nected to other components in the environment. These ports go through SyncFS which acts
as a mediator to ensure synchronous access behavior on these channels.

All components are peers that may access each others’ resources as exposed by the SyncFS

file server. In contrast to Plan 9, each component is expected to explicitly add itself to the
global SyncFS namespace to interact with other components. A terminal component is the
one that only accesses its own data.

3.1. Golf cart components

All file writes are globally synchronized when a ubiquitous system tick (a macrotick in Kopetz’s
terminology[2]) occurs. SyncFS provides an implicit clock component to which new and
reentering components can explicitly synchronize. We have demonstrated ERTS in scenarios
involving autonomous vehicle navigation. Several components for devices like compass, GPS,
joystick and virtual components like bearing control, steering amplifier, configuration process
and others interact to achieve autonomous navigation. The file format used by us to exchange
structured data between these components is JavaScript Object Notation (JSON) for it is
widely used, relatively light-weight, simple and readable.

4. Work in Progress

4.1. Windows file system support

ERTS uses the v9fs modules shipped with the Linux kernel since 2.6.14 to mount the SyncFS

file system. Linux has primarily been the prototyping and development platform used until now.
One of the primary missions of the ERTS robotic vehicles is to serve as a experimental platform
for research in areas ranging from robotic vision, human-robot interaction to safety-critical
systems. As we engage the cart in more collaborative research at Indiana University, we feel
the need to take into consideration heterogeneous development environments and platforms.
Oftentimes, the most preferred platform of development for researchers achieving experimental
objectives in allied fields is Microsoft c©Windows. This can be partly attributed to the lack of
availability of specialized tools and software on other platforms.

This compelled us to add native support for 9P file system in Windows. We chose the approach
of writing a userspace file system driver over a Windows Installable File System (IFS) driver
to save us from the effort of writing a driver in the Windows kernel, and save time to focus
on other important aspects of the project.

This driver is partially implemented and we hope to have full support in a few weeks. This
would enable us to write components around SyncFS in Windows, and enable interaction of
these components with our existing computer vision algorithms for horizon detection, visual
tracking and object recognition, collaboratively developed under the hood of ERTS vision
project at Indiana University.



4.2. Component Framework in Inferno

We are experimenting with implementing the components in hosted Inferno to provide us with
the desired platform heterogeneity. We intend to rewrite some of the components in Limbo and
use some of the abstractions provided by the language, in the form of typed channels and CSP
paradigm to implement a synchronous, time-triggered embedded programming framework.

5. Future Directions

In our effort to incorporate a homogeneous resource access interface in the underlying file
system, we have encountered several potential directions to explore in the ERTS project.

5.1. Programming Models for Synchronous Design Methodology

A file namespace hierarchy provides a homogeneous representation of heteregeneous resources,
but it provides no explicit means of governing process synchronization and scheduling. Real-
time embedded systems, safety- critical systems usually employ a synchronous design method-
ology through a higher level abstraction of the underlying architecture and system.

Time-triggered programming languages like ESTEREL, GIOTTO can aptly specify and model
concurrent reactive systems. We intend to explore synchronous programming models and illus-
trate its use in real-time embedded systems using ERTS. In its current stage of implementation,
we have an almost working functional interface to the SyncFS component model, written in
the Scheme programming language.

5.2. Support for embedded-network protocols

As the DARPA Grand challenge demonstrated, more and more autonomous vehicles are now
employing “drive-by-wire” and “steer-by-wire” technologies to off-load critical navigation func-
tionality to a group of networked computers. We would like to push the frontier of SyncFS

beyond ERTS’s existing support for Ethernet/Linux network. Embedded-network protocols lay
emphasis on higher data rates, low power consumption, time and event-triggered behavior.
The delays due to sequential component dependencies can be reduced by implementing 9P
over these protocols. Automotive systems have been using specialized bus-based protocols like
CAN-bus and other fieldbus protocols for over a decade.

Realtime Ethernet protocols like Ethernet Powerline, EtherCAT provide synchronized, real-time
network access over standard Ethernet. These are most likely our initial favorable targets to
port 9P to minimize the inter-component communication delays.

5.3. Distributed Clock Synchronization

When used in a distributed context, there is a certain performance penalty incurred by SyncFS

owing to its design. Performance and resiliency concerns thus make distributed clock synchro-
nization desirable. This is an important goal in further development of SyncFS.

6. Conclusion

In a couple of years, commercial premium-class vehicles will contain over 1 GB of onboard sys-
tem software. Autonomous vehicles are also geared with drive-by-wire capability which enforces
the need for distributed, reusable component-based models for representing embedded systems.
We believe the approach we have taken is quite viable for rapid prototyping in resource-rich
environments. For our purposes, language independence and light-weight, composable tool
chain are extremely important benefits.

7. References

1. Steven D Johnson, Bryce Himebaugh and Scott A. Dial. Homogeneous resource con-
figuration and access for an autonomous robotic vehicle. SAE Int. J. Commer. Veh,
1(1): 534–543, October 2008.

2. Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. 1997, Kluwer, Boston

3. Bhanu N. Pisupati & Geoffrey Brown. File system interfaces for embedded software
development. 2005 IEEE Intl. Conf. on Computer Design (ICCD 2005), October 2005,
232–235.


